EQUIPAMIENTO

TRANSFORMADOR DE POTENCIA

INTERRUPTOR DE POTENCIA

SECCIONADORES

TRANSFORMADORES DE MEDIDA

PARARRAYOS Y DISPOSITIVOS DE ATRACCIÓN

TRAMPA DE ONDA

BARRAS CONDUCTORAS

AISLADORES

PÓRTICOS

SECCIONADORES

Son equipos que se instalan en los sistemas eléctricos de potencia con el objeto de aislar o mantener fuera de servicio a circuitos o equipos en condiciones normales o bajo falla.

Estan formados por dos o tres columnas de cerámicas, las cuales pueden ser rotativas, un perfil metálico para soporte de los aisladores, un varillaje de accionamiento con un accionamiento manual o motorizado, una estructura soporte y una caja de contactos auxiliares para señalización y control.

NORMAS

CADAFE NS-E-130

ANSI C37.30

ANSI C37.32

ANSI C37.33

ANSI C37.34

ANSI C37.35

IEC 129

IEC 265

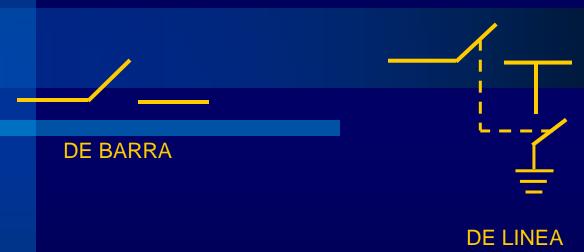
SECCIONADORES

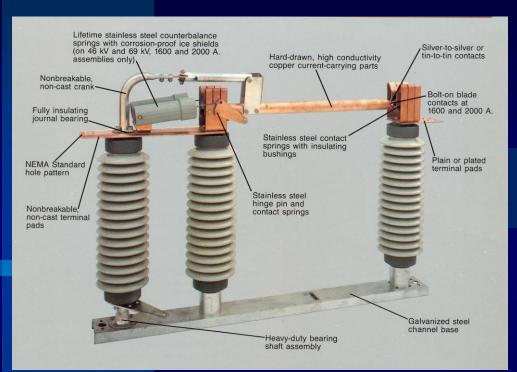
Son dispositivos que permiten aislar un sector del sistema eléctrico

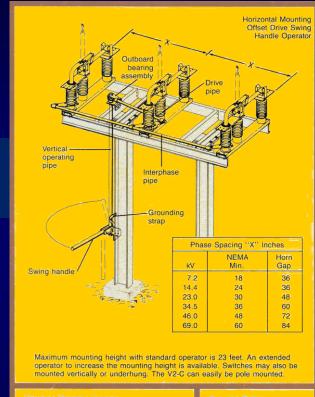
PRECAUCION

Los seccionadores no tiene capacidad para abrir un circuito bajo carga,

mucho menos

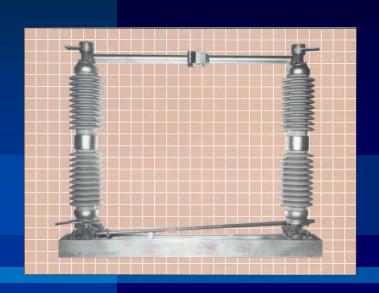

corrientes de cortocircuito,

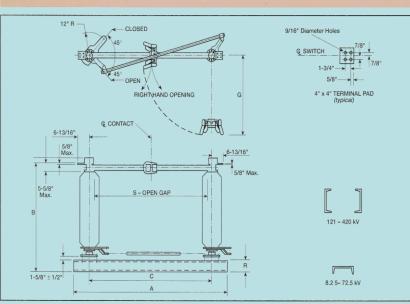

por lo tanto,


deben ser operados con el circuito des-energizado.

IDENTIFICACIÓN EN LOS DIAGRAMAS UNIFILARES

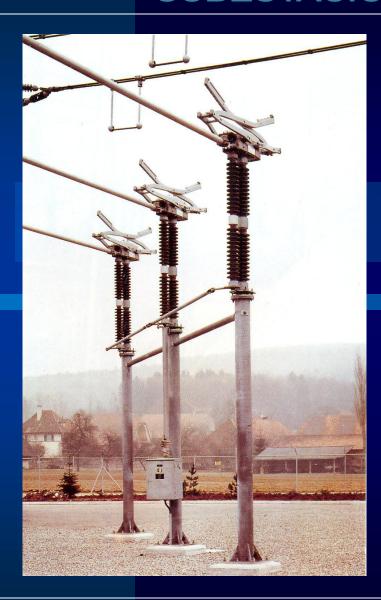
LOS SECCIONADORES SE IDENTIFICAN DELA SIGUIENTE MANERA




Standard Operator Feature

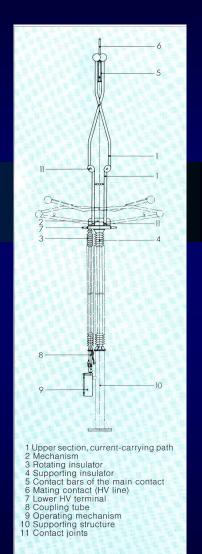
- Swing handle
- Operator that can be padlocked in both the open and closed positions
- Ground strap for vertical operating pipe
- Adjustable stops
- · Open Closed indicators
- Self-lubricating, maintenance-free outboard bearing
- Non-cast linkage parts
- 1 1/2" IPS galvanized steel vertical operating pipe

Operator Option

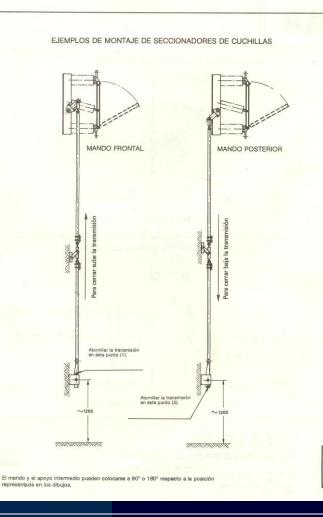

- Geared handcrank
 -10.1, 20.1, and 40.1
 gear ratios available
- Motor operator
 AC or DC operating voltage
 Bolted to vertical pipe or provided
- with decoupler
 Reciprocating pump handle

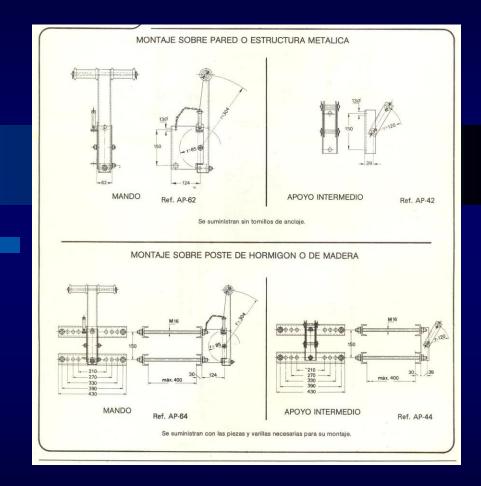
Bolt	Ratin	ngs/kV	Dimensions										
Circle	Max. Design	BIL	A	В	С	G	R	S	TR No.	Approx. Single Pole Weight*			
	7.5	200	39"	21-1/8"	24"	15-3/4"	2"	18"	202	126			
	15.5	200	39"	23-5/8"	24"	15-3/4"	2*	18"	205	132			
	25.8	200	39"	27-5/8"	24"	15-3/4"	2"	18"	208	156			
	38	200	39"	331-5/8"	24"	15-3/4"	2*	18"	210	178			
A33	48.3	250	45"	35-3/4"	30"	17-3/4"	2-1/8"	22"	214	261			
	72.5	350	57"	43-3/4"	42"	24-1/4"	2-1/8"	34"	216	356			
	121	550	78"	62-5/8"	60"	31-3/4"	6"	52"	1795	541			
	145	650	90"	71-5/8"	72"	38-5/8"	6"	64"	1797	580			
	169	750	102"	79-5/8"	84"	44-5/8"	6"	76"	1796	692			
	7.5	200	39"	23-5/8"	24"	15-3/4"	2"	18"	222	156			
	15.5	200	39"	25-5/8"	24"	15-3/4"	2"	18"	225	164			
	25.8	200	39"	28-5/8"	24"	15-3/4"	2"	18"	227	213			
	38	200	39"	33-5/8"	24"	15-3/4"	2"	18"	231	260			
	48.3	250	45*	37-3/4"	30"	17-1/8"	2-1/8"	20"	267	361			
	72.5	350	57"	43-3/4"	42"	24-1/4"	6"	32"	276	409			
A55	121	550	78"	62-5/8"	60"	31-3/4"	6"	50-3/4"	286	615			
	145	650	90"	71-5/8"	72"	38-5/8"	6"	61-1/8"	288	695			
	169	750	102"	79-5/8"	84"	44-5/8"	6"	73-1/8"	291	779			
	245	900	114"	99-5/8"	96"	50-5/8*	8"	85-1/8"	304	962			
	245	1050	140"	111-5/8"	122"	63-5/8*	8"	111-1/8"	312	1096			
	362	1050	140"	111-5/8"	122"	67-1/2*	8"	111-1/8"	312	1266			
	362/420	1300	162"	128-5/8"	144"	76-1/2"	10"	127-1/4"	324	1526			
	245	900	114"	100"	96"	50-5/8*	8"	85-1/8"	_	1258			
A57	245	1050	140"	112"	122"	63-5/8"	8"	111-1/8"	_	1428			
AS/	362	1050	140"	112"	122"	67-1/2"	8"	111-1/8"	_	1598			
	362/420	1300	162"	129"	144"	76-1/2"	10"	127-1/4"	367	1666			
Weight, in lbs. o	f Single Pole Swit	tch with insulato	r.										

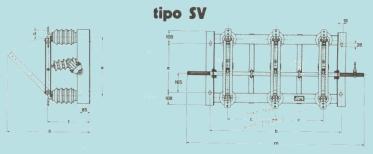
Weight, in lbs. of Single Pole Switch with insulator.

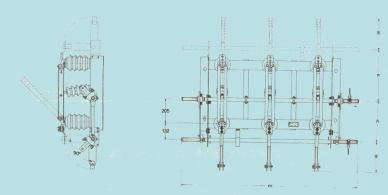

for manually-operated earthing switch.

Subular conductor with expansion clamp.


Stranded conductor connector.




MANDO MANUAL PARA SECCIONADORES DE EXTERIOR



SECCIONADORES TRIPOLARES PARA EXTERIOR

SECCIONADORES III REF. 521.310

SECCIONADORES III CON PUESTA A TIERRA REF. 521.311

SECCIONADOR		SECCIONADOR CON PUESTA A TIERRA		9 ,	~		TENSION ()	E ENSAYO		W (S)	17A N/TE						-	- Ku										
		W. HEYDON		W. HEYDON		N FIELDON		W HEIGH		ENSID.	TENSION	ENTRE Y Mi	FASES ASA	ENTRE COL CUCHILLA	NTACTO Y ABIERTA	SIDAD I	CRES CORRIE for cres				Di	MENSION	ES EN N	FLIMETE	ROS			
REFERENCIA	Peso Kg.	REFERENCIA	Peso Kg	DAL A	KV	Bajo liuvia la frecuencia industrial K.V	Al choque valor cresta KV	Bajo Ruvia a frecuencia industrial KV	Al choque valor creata K.V.	CORTA KA IVS	VALOR DE LA C XA (Ve	3	b	c	·		m	٥		d								
521.310. 617 521.310.1217 521.310.1617	65 68 89	521 211 617 521 311 1217 521 311 1617	81 84 105	630 1250 1600	17	38	95	45	110 20	20 40 50	50 100 125	500	1095	400	420	225	1480	337	427	39 50 55	307 321 321	683 696 696						
M21.310. 624 M21.310.1224 M21.310.1624	68 71 93	M21 311 624 M21 311 1224 M21 311 1624	84 87 109	630 1250 1600		50	125			20 40 50	50 100 125									39 50 55 75	342 356 356	711 73 73						
521.310 636 521.310 1236 521.310 1636	77	521.311 636 521.311.1236 521.311.1636	93 96 120	630 1250 1600	36	70	170	80	195	20 40 50	50 100 125	580	1295		io 500		i.			39 50	376 432 446	751 867 881						
M21.310, 636 M21.310,1236 M21.310,1636	21.310.1236 80 M2	M21.311.636 M21.311.1236 M21.311.1636	98 101 125	630 1250 1600		82	200	100		20 40 50	50 100 125			500		350	1780	337	507	55 39 50 55	446 472 486 486	88 86 88						

La puesta a tierra se monta normalmente al lado de giro. Bajo demanda puede montarse al lado de cierre.

SOBRETENSIONES

En una subestación pueden aparecer dos tipos de sobre tensiones:

- Sobre tensiones internas.
- -Sobre tensiones por descargas atmosféricas.

Las primeras se deben a fallas monofásicas en sistemas aislados, a la presencia de condensadores, a maniobra de los equipos.

Las segundas debido a las descargas atmosféricas, las cuales pueden ser entrantes o de incidencia directa.

Para proteger a la subestación frente a la ocurrencia de las sobre tensiones internas o entrantes se utilizan los pararrayos o descargadores, mientras que para las sobre tensiones por descargas atmosféricas de incidencia directa su usan los cables de guarda y las puntas Franklin. directa.

PARARRAYOS

Estos equipos se utilizan para descargar a tierra las sobre tensiones debido a maniobras de equipos, fallas en el sistema de potencia o frentes de ondas de sobretensión entrantes a una instalación de potencia, producto de la incidencia de descargas atmosféricas en las fases de los conductores de la línea de transmisión que alimenta la instalación.

Se instalan en las llegadas de línea y lo mas cercano a los equipos a proteger

Gracias a los pararrayos se puede realizar la coordinación del aislamiento de una instalación.

Existen pararrayos tipo estación y tipo distribución. Se diferencian por su corriente de descarga. 10 kA y 5 kA

NORMAS

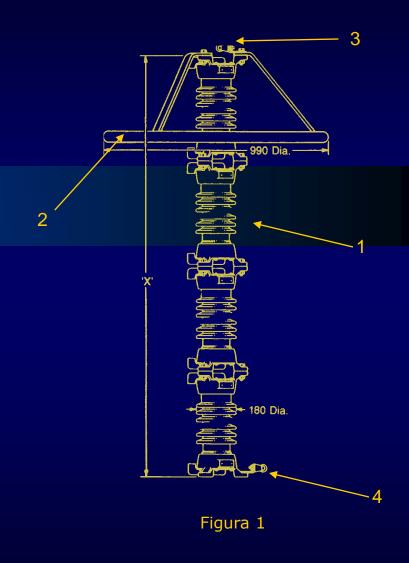
Publicación 99 IEC Lightning Arrester

ANSI C62.1 Surge Arrester for Alternating Current Power-Circuits

NEMA LA.1 Surge Arrester

CADAFE N-S-140 Especificación Técnica de Pararrayos.

PARTES DE UN PARARRAYOS.


Están constituidos por una carcaza de cerámica o material polimérico (1), dentro de la cual se colocan los elementos que realizan la función de descarga. Los diseños pueden tener en su interior dos componentes: un explosor (spark gap) y un conjunto de resistencias no lineales o varistores en serie entre si y con el explosor. Existen dos tipos de material usado para las resistencias no lineales que son: Carburo de Silicio SiC y oxido de Zinc. La designación de autovalvula se debe a la forma como opera el explosor o espinterómetro.

Los explosores tienen como función la de aislar a las resistencias no lineales del elemento bajo tensión en condiciones normales.

Hoy en día dado el comportamiento extraordinario del oxido de Zinc frente a las ondas de tensión de frente escarpado ha permitido eliminar de los descargadores, el uso de los explosores.

En el esquema constructivo con materiales de oxido metálicos se aprovecha la característica no lineal de las pastillas pues estas se comportan como varistores que como todos saben presentan una baja resistencia cuando en sus terminales se aplica una elevada tensión y bajo condiciones nominales de operación se comportan como una alta resistencia.

Otros elementos que forma parte del pararrayos consisten en los aros (2) para prevención de la aparición de gradientes de tensión, los terminales de alta tensión (3), terminales de puesta a tierra (4), la válvula de sobre presión no indicada en la Fig. 1, las bases aislantes y los contadores de descarga; estos últimos se utilizan para llevar un récord estadístico de las descargas atmosféricas que inciden sobre las fases.

DEFINICIONES

Para la selección, especificación o compra de los pararrayos o descargadores se deben conocer los siguientes términos:

TENSION MÁXIMA DEL SISTEMA (Vmax):

Es el mayor voltaje r.m.s. fase-fase que puede aparecer en condiciones normales en cualquier instante de tiempo y punto dentro del sistema. Este valor no debe hacer operar al pararrayos. Ejemplo: en el caso de 115 kV, la máxima tensión nominal del sistema es 121 kV según la Norma ANSI y 123 kV según la NORMA IEC.

TENSIÓN NOMINAL DE OPERACIÓN (Vn).

Es la tensión nominal del sistema para el cual va a ser utilizado el pararrayos. Ejemplo: en un sistema de 115 kV, la tensión nominal de operación es 115 kV.

TENSION NOMINAL DEL PARARRAYOS (Vn) O MÁXIMA TENSIÓN CONTINUA DE OPERACIÓN (V_{MCOV})

Es el valor rms de la tensión del sistema entre terminales a frecuencia de red, y a la cual el pararrayos esta diseñado para operar continuamente sin que varíen sus características de operación. También se define como la máxima tensión permitida que puede ser aplicada de manera continua al terminal de alta tensión del pararrayos. V_{MCOV} > Vmax.

TENSION DE DESCARGA O CEBADO A FRECUENCIA DE LA RED.(Vd).

Es el valor rms de la tensión mínima a frecuencia del sistema, que aplicada entre terminales del pararrayos produce la descarga.

TENSION RESIDUAL (Vr)

Es la tensión que aparece entre terminales de un pararrayos durante el paso de la corriente de descarga.

NIVEL DE AISLAMIENTO A LAS ONDAS DE CHOQUE POR RAYO.

Es el valor pico de una onda de tensión de prueba 1,2x50 µs, la cual al ser aplicada al equipo es indicativa de la rigidez dieléctrica del mismo al ser sometido a sobre tensiones transitorias debidas a descargas atmosféricas.

NIVEL DE AISLAMIENTO A LAS ONDAS DE MANIOBRA.

Es el valor pico de una onda de tensión de prueba 250 x 2500 μs, la cual al ser aplicada al equipo es indicativa de la rigidez dieléctrica del mismo al ser sometido a sobre tensiones transitorias debidas a operaciones de maniobra.

NIVEL DE AISLAMIENTO A FRECUENCIA DE LA RED.

Es el valor efectivo de la tensión de prueba a frecuencia de rango entre 48 a 62 Hz, que el equipo deberá soportar sin daño alguno por un periodo de tiempo de un (1) minuto.

Cabe resaltar que todas estas pruebas son de carácter destructivo, y caen dentro de la denominación de pruebas tipo. Estas se realizan a prototipos de equipos antes de comenzar una producción en serie.

CORRIENTE NOMINAL DE DESCARGA (Id)

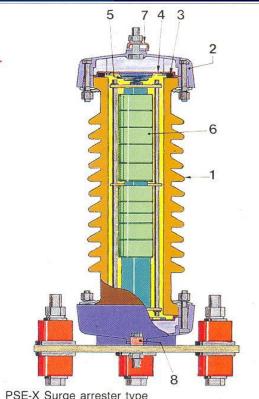
Es el valor pico de la corriente de impulso de características 8/20 μs usada para clasificar al pararrayos. Esta corriente suele ser de 10 kA de acuerdo a las NORMAS ANSI e IEC.

La corriente de descarga de 10 kA se utiliza también para definir la tensión de descarga en caso de que esta corriente no sea conocida.

FACTOR DE ATERRAMIENTO (ke).

Es la relación de los voltajes en la fases sanas durante y antes de la ocurrencia de una falla a tierra.

Este factor depende de la relación de las impedancias de secuencia del sistema en el punto de ubicación del pararrayos, sin embargo para efectos prácticos se pueden considerar los siguientes valores:

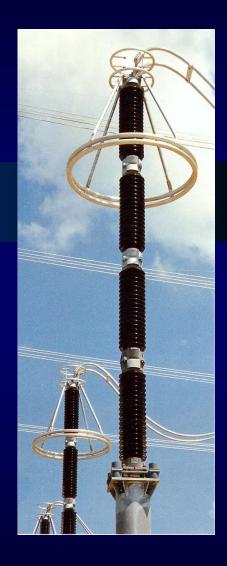

Sistemas solidamente puestos a tierra ke = 0,8

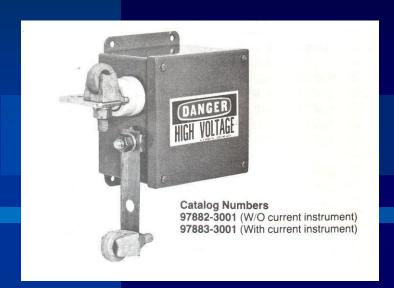
Sistemas con neutro aislado ke = 1,05

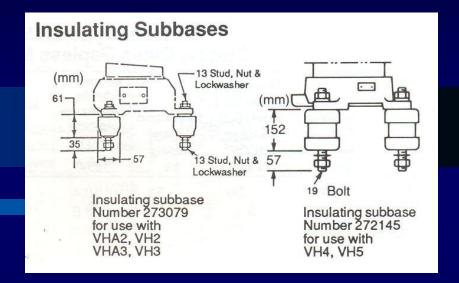
CAPACIDAD DE ALIVIO DE PRESION

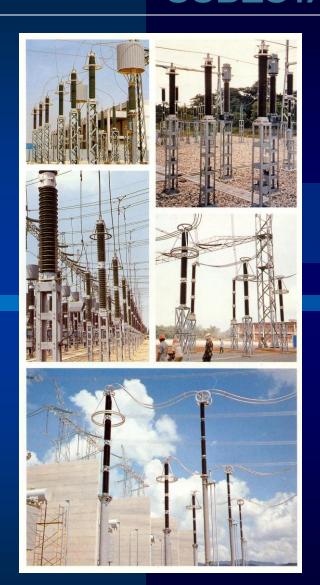
Es la habilidad del pararrayos, en el evento de su sobrecarga debido a cualquier motivo, a conducir la corriente de cortocircuito del sistema a través de él sin que se produzcan explosiones violentas las cuales puedan dañar a los equipos vecinos o a las personas. Una vez actuado la válvula de alivio de presión el pararrayos debe ser reemplazado.

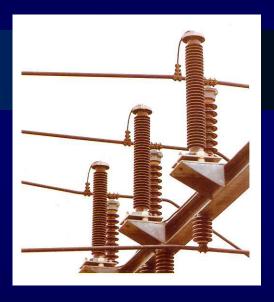

			NIE 24	0.0		_																																																		
		U	NE 210						VDE:0414 Ens. frec. ind. Ensayo choque					CEI 185 y 186																																										
		E.		Ensayo		E		F		-		_		F		F		F		F		F										_				_		_				G1	Ensay.	Ensay.			V _{ef}	Ensayo K V	choque	Serie 1	(S* pais	ses eur.)	Serie :	II (S* US		
	U _{max} KV.	Ensayo frec. industrial		cho	que	Clase Aisl.	frec.	choque (BIL)	Umax	Aisl.	Aisl.	Minut			Ensa.	Ensa.		Ensa.		hoque																																				
ı		KV _{ef}	V _{ef}	KV	CPRF1.0	ΚV		K V cresta	KV	D (entre	F (entre	Nivel	Nivel S	U _{mex} KV		choque	ΚV	fr. ind.	Pot. red																																					
								· ·		espiras)					KV _{er}	K V _{creeta}		KV _{ef}	<500	>500																																				
							-			-		-			-				KVA	KVA																																				
										utro no e I		tierra.																																												
	0,6		3			0,6	4	10	0.6	2	3			6,0	3		0,6	4	10	10																																				
	1,2		10			1,2	10	30	1,2	3,5	10		İ	1,2	6		1,2	10	30	30																																				
	3,6		27		45	2,5	15	45	3.6	16	21	45	40	2,4	11		2,75	15	45	60																																				
						5	19	60	3.0	10	21	45	40	3,6	16	45	5,5	19	60	75																																				
	7,2		33		60	8.7	26	75	7.2	22	27	60	50	7.2	22	60																																								
	12		42		75				12	28	35	75	60	1.2	28	75	9,25	26	75	95																																				
			194			15L	34	95									15,5	34	95	110																																				
	17.5		53		95	15H	34	110	17.5	38	45	95	75	17.5	38	95																																								
	24		64		95 25	18 25	40	125	24	50	5.5	125	95	24	50	125	25,8	50	15	50																																				
	24		04	,	25	34,5	50 70	150 200	27.5	60	65	145	125							Ĭ																																				
						34,3	. 10	200																																																
	36		86	170					36	70	75	170	145	36	70	170	38	70	20	0																																				
						46	95	250									43,3	95	2.5	0																																				
	52	J	119 250					52	95	105	250	190	52	95	250																																									
- 1						69	140	350																																																
	72.5	1:	52	3	25				72.5	140	140	325	250	72,5	140	235	72.5	140	35	.																																				
		Aisl. Aisl.		Aisl. Aisl.										Umax		rec. indu			hoque K																																					
		pleno	reduc.	pleno	reduc.									ΚV	Aisl. p	leno Aisl	. reduc.	Aisl. ple	no Aisl	reduc.																																				
	100	185	40-	450		92	185	450						100	- 185	.	150	450		380																																				
						115	230	550									150																																							
	123	230		550		138	275	650	125	230	230	550	4.50	123	2.30)	185		450																																					
	145	275		650										145	275		230			550																																				
	170	325		750		161	325	750	170	325	325	750	650	170	325	275		750		550																																				
						180	360	825			117		00		32.		275	7.50	1	150																																				
						196 215	395 430	900 975																																																
	245	460	395	1050	,,,,,	230	460	1050																																																
	245	460	393	-1050	900	260	520	1175	250	460	460	1050	900	24.5	460	395	6 6 360	1050	900	o 825																																				
						287	575	1300	2.º Ne	utro afec	tiv. a tie	rra																																												
						315	630	1425	125	185	185	450	375	300		516	0 0 469		1,17	5 ó 1050																																				
						345	690	1550	170	275	275	650	550						1175	61030																																				
						375	750	1675	250	395	395	900	750	362		570	ò 510		1300) ó I 175																																				
	430	400		1650		400	800	1800																																																
	420	680	630	1550	1450	430	860	1925	420	630	680	1425	1300	420		680) ó 630		1550	ò 1425																																				
	-		,			460	920	2050																																																
						490	980	2175						525		7.40	0 6 6 8 O		1674	0.1550																																				
						520	1040	2300						323		/40	,0000		1673	ò 1550																																				
3						545	1090	2425																																																




PSE-X Surge arrester type


- 1 Insulator
- 2 Flange with nozzle 3 Seal


- 4 Safety diaphragm 5 Compression spring
- 6 Resistor
- 7 H.V. terminal
- 8 Earth terminal



CABLE DE GUARDA Y PUNTA FRANKLIN

Muchos piensan erroneamente que los pararrayos se utilizan para atraer la descargas atmosfericas, cuando ellos solamente se encargan de drenar a tierra las sobre tensiones.

En las subestaciones la resposabilidad de atraer las descargas atmosfericas es de los cables de guarda y las puntas Franklin.

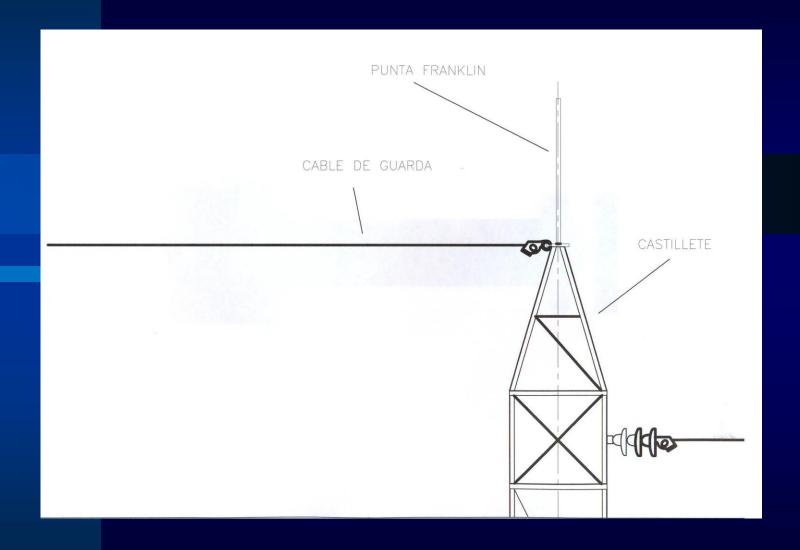
CABLE DE GUARDA

Un cable de guarda no es mas que una guaya de acero galvanizado que se coloca a una altura mayor que las barras de la subestación o el equipo mas alto.

Ellos son elementos atractivos de las descargas, permitiendo que esta incida sobre el en lugar de de algun componente de la subestación.

Una vez que es tocado por la descarga, él se encarga de drenarla al suelo.

Los calibres de guaya mas usado en las subestaciones son 3/8" y 5/16".


En algunos casos se coloca en el tramo entre el pórtico de llegada y la torre terminal cables de guarda del tipo allumoweld, pero esto es debido mas que todo a que este es el que viene colocado en la línea.

Para alcanzar alcanzar las alturas efectivas de protección del cable de guarda se utilizan extensiones en las columnas de los porticos denominadas castilletes.

PUNTA FRANKLIN

Las puntas Franklin son barras que al igual que los cables de guarda se colocan a mayor altura que el resto de los equipos, con el objeto de atraer las descargas atmosfericas.

En la protección de edificios se utilizan pequeñas barras de cobre de 0,5 m de longitud, sin embargo en subestaciones las puntas se pueden construir con tubos de acero de 1" de diametro o de una sección tal que pueda soportar la presion del viento existente en la zona sin doblarse.

TRAMPA DE ONDA

Son bobinas de cobre o aluminio que se instalan en serie en las líneas de transmision a la llegada de las subestaciones

Se montan sobre transformadores capacitivos o de tensión capacitivos o en los porticos

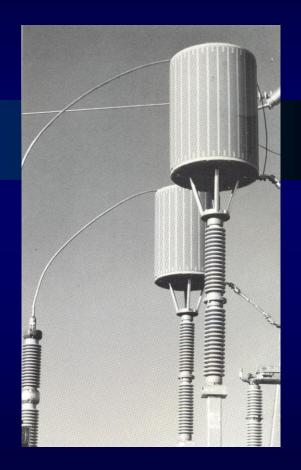
para conformar un filtro pasa bajo para la señal de 60 Hz y filtro pasa alto para las señales del orden de los khz

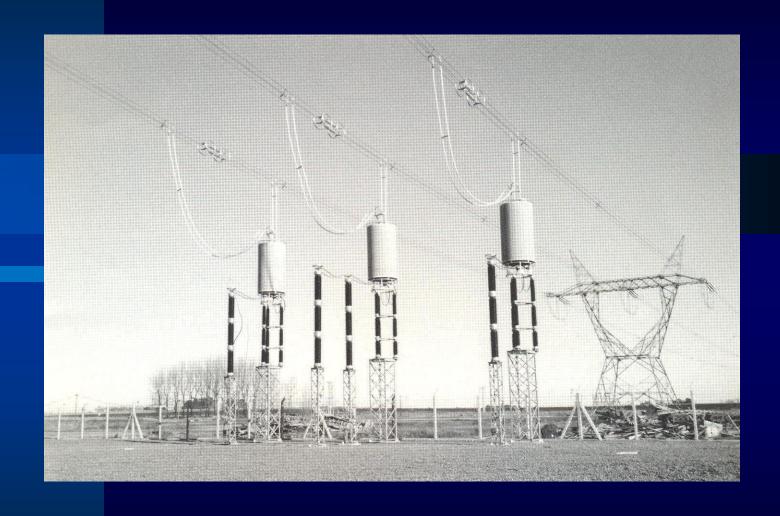
Forman parte integral del llamado sistema de onda portadora

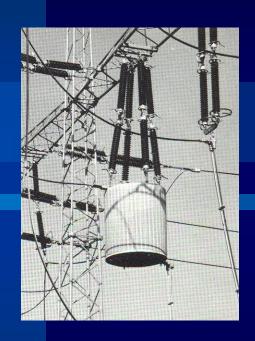
CADAFE tiene los siguientes valores de inductancia 0,2-0,25-0,4-0,5-1,0-2,0 mH

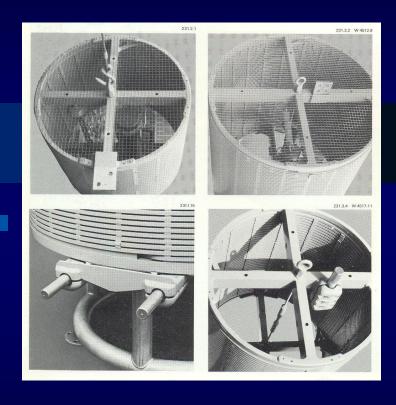
NORMAS

CADAFE NS-E-170


IEC 353


IEC 99-1


ANSI C 93.3



BARRAS CONDUCTORAS

Son las encargadas de la interconexión entre los diferentes componentes o equipos de una subestación.

Existen dos tipos de barras:

- Barras tendidas.
- Barras soportadas.

BARRAS TENDIDAS.

Están conformadas por los conductores flexibles y pueden ser de cobre, aluminio, ACSR o ACAR.

Se sujetan a los pórticos mediante cadenas de amarre o suspensión. Son excelentes para barras principales de vanos largos y son utilizadas también para interconexión entre equipos o como bajantes.

La utilización del material de cobre o aluminio en las barras flexibles dependerá de la atmósfera reinante alrededor de la subestación, por ejemplo en una zona tan contaminante como lo es la costa debe usarse cobre.

En caso de que se requiera tracción en el conductor de barras deberá emplearse ACSR.

Las tablas siguientes muestran los calibres normalizados por CADAFE en sus subestaciones.

TABLA 1

CONDUCTORES DE COBRE DESNUDOS AA y A PARA USO EXTERIOR.

NS-E-240

CALILIFIE AWG 6 MCM	n° de Alam- Bres.	DIAME- TRO DE CADA - ALAM- BRE. (mm)		SECCION CALCULA DA. (mm²)	PESO (Kgf/Km)	CAPGA DE HUPIURA	URO RESISTENCIA EN C.C. a — 20°C. (.C./ Km)	SEM CARGA DE HUPIURA (Kgf)	IDURO RESISTENCIA EN C.C. a - 20°C. (\(\sumeq \text{Km}\))	BI CARGA DE HUPIURA (Kgf)	ANDO RESISTENCIA EN C.C. a - 20°C. (.C. //m)	CAPACIDA DE CORRIENT (Amp)
4/0	7	4,42	13,26	107	973	4152	0,1706	3301	0,1697	2789	0,1637	353
350	12(AA)	4,34	18,03	178	1609	6868	0,1031	5461	0,1026	4613	0,0991	486
350	19(A)	3,45	17,25	177	1609	7072	0,1031	5534	0,1026	4613	0,0991	482
600	37	3,23	22,63	303	2757	12256	0,0602	9553	0,0598	7911	0,0578	669
ALI PER E	A.	uran.	OIVEC	WALL O E	arubad Saylada		TONE VIEW		ener en			

TABLA 2

CONDUCTORES DE ALUMINIO EC-H19 DESNUDOS CLASES AA y A PARA USO EXTERIOR

CADAFE

NS-E-240

CALIBRE AWG ó	N° DE	DIAMETRO DE CADA ALAMBRE	DIAMETRO DEL CONDUCTOR	SECCION CALCULADA	PESO	CARGA DE RUPTURA	RESISTENCIA EN C.C. a -	CAPACII DE	
MCM	ALAMBRES	(mm)	(mm)	(mm ²)	(Kgf/Km)	(Kgf)	20 °C. (_A_/Km)	CORRIENT	
		give I man	393 T 305	0.0	1 2.1	Mass	1021 503	o'v	
4/0	7	4,42	13,26	107,27	296	1737	0,2689	282	
336,4	19	3,38	16,92	170,55	470	2790	0,1691	376	
636	37	3,33	23,31	322,22	888	5171	0,0895	557	
954(AA)	37	4,08	28,56	483,55	1333	7439	0,0596	714	
954 (A)	61	3,18	28,59	483,72	1333	7666	0,0596	. 714	
1272	61	3,66	33,02	644,50	1777	9979	0,0447	830	
1590	61	4,10	36,91	805,86	2222	12247	0,0358	959	
	,			M 180 I	Figure 1				
			27-1152084		1,000				

Pag.

BARRAS SOPORTADAS.

Son conductores rígidos de aluminio o cobre de sección circular o rectangular que deben ser instalados sobre aisladores de soporte, de ahí su nombre. Se utilizan como barras principales en aquellas sitios donde la flecha de los conductores flexible presentaría problemas de alturas mínimas. Tiene la desventaja que se fabrican en tramos de seis metros, siendo necesario la utilización de conectores para realizar tendidos de longitudes mayores.

Hay quienes usan soldadura para unir las barras, sin embargo, para evitar puntos calientes la misma debe ser de calidad. También hay quienes prefieren usar barras flexibles para la interconexión entre equipos en lugar de barras soportadas con el objeto de evitar el uso de conectores expandibles que absorban la dilatación de los tubos por lo costoso que resultan.

Las barras de sección rectangular se usan mas como barras principales dentro de los tableros o celdas, mientras que las barras de sección circular en las áreas exteriores.

Existen tres tipos de barras soportadas de sección circular:

Estándar (Standard)

Pesada (Heavy)

Extra pesada (extra-heavy)

La diferencia entre ellas es el espesor de la sección.

Cabe resaltar que la selección de la sección para una barra soportada es mas por razones mecánicas que por capacidad térmica o cortocircuito.

BARRAS SOPORTADAS.

Las barras soportadas pueden ser de cobre o aluminio y su calibre se denomina en pulgadas.

Cabe resaltar que aún cuando encontremos barras de 1", 11/2", etc., debemos tener presente que este es un diámetro nominal siendo realmente el diámetro interno mayor, diferencia que puede ser observada en las tablas de barras normalizadas por CADAFE que se muestran mas adelante.

Esto es importante conocer el diámetro mayor al momento de seleccionar el conector de la barra pues estos por lo general tienen un rango de seccionas al cual pueden ser aplicados.

El termino SPS y HEPS de las tablas significa "STANDARD PIPE SIZE y EXTRA HEAVY PIPE SIZE" respectivamente.

CADAFE

Pág. 8

TABLA 3

PARA USO EXTERIOR

CALIBRE IPS	DIAMETRO EXTERNO (mm)	DIAMETRO INTERNO (mm)	PESO (Kgf/m)	RESISTENCIA EN C.C. a 20 °C.			
				(\O /Km)	400		
3/4" SPS	26,67	20,88	1,92	0,0797	603		
1" SPS	33,40	26,97	2,71	0,0565	732		
1 1/2" SPS.	48,26	40,64	4,73	0,0324	1063		
2" SPS	60,33	52,37	6,26	0,0245	1293		
2 1/2" SPS	73,03	63,50	9,08	0,0169	1634		
3" SPS	88,90	77,77	12,95	0,0118	2053		
3/4"EHPS	26,67	18,69	2,53	0,0606	691		
1" EHPS	33,40	24,16	3,71	0,0413	856		
1 1/2" EHPS	48,26	37,95	6,21	0,0247	1218		
2" EHPS	60,33	49,10	8,58	0,0179	1514		
2 1/2" EHPS	73,03	58,80	13,10	0,0117	1965		
3" EHPS	88,90	73,46	17,50	0,0088	2370		

NS-E-240

Pág. 9

TABLA 4

BARRAS TUBULARES DE ALUMINIO EC
PARA USO EXTERIOR

CALIBRE IPS	DIAMETRO EXTERNO (mm)	DIAMETRO INTERNO (mm)	PESO (Kgf/m)	RESISTENCIA EN C.C. a 20 °C.	CAPACIDAD DE CORRIENTE (Amp)
3/4" SPS	26,67	20,93	0,58	0,1311	474
1" SPS	33,40	26,64	0,86	0,0882	592
1 1/2"					
SPS.	48,26	40,89	1,39	0,0545	831
2" SPS	60,33	52,50	1,88	0,0405	1022
2 1/2"		W-			
SPS	73,03	62,71	2,97	0,0256	1350
3" SPS	88,90	77,93	3,89	0,0196	1625
3/4"EHPS	26,67	18,85	0,76	0,1006	541
1" EHPS	33,40	24,31	1,11	0,0683	673
1 1/2"			-		
EHPS	48,26	38,10	1,86	0,0408	961
2" EHPS	60,33	49,25	2,58	0,0295	1199
2 1/2"		1			
EHPS	73,03	59,00	3,93	0,0193	1556
3" EHPS	88,90	73,66	5,26	0,0145	1888
i					

NS-E-240

TARLA			
	CTTA	DI	4

BARRAS DE COBRE PLANAS PARA USO INTERIOR

CAPACIDAD DE CORRIENTE CAPACIDAD DE CORRIENTE CAPACIDAD DE CORRIENTE A T-amb. = 60 °C. A T-amb. = 40 °C. A T-amb. = 50 °C. ANCHO X SECCION **PESO** (mm^2) **ESPESOR** (Kgf/m) (A) (A) (A) (A) (A) (A) (mm) 0,268 10 x 3 10 x 5 0,447 0,402 15 x 3 15 x 5 0,670 0,894 20 x 5 1,788 20 x 10 25 x 3 0,670 25 x 5 1,117 30 x 5 1,341 2,682 30 x 10 1,788 40 x 5 3,576 40 x 10 60 x 5 2,682 5,364 60 x 10 80 x 10 7,152 8,940 100 x 10 120 x 10 10,728

NS-E-240

CADAFE

SELECCIÓN DE LAS BARRAS.

Las barras sean tendidas o soportadas deben ser seleccionadas por criterios de selección tanto eléctricos como mecánicos y deben satisfacer las condiciones mas exigentes de las dos.

AISLADORES

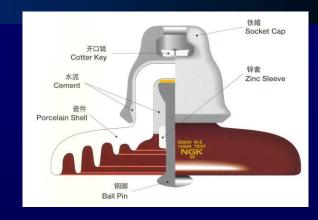
Como su nombre lo indican permiten mantener las partes energizadas de una instalación de las partes puestas a tierra.

Adicionalmente sirven de sujeción o fijación de las barras conductoras dentro de la subestación.

Hay tres tipos de aisladores dentro de una subestación denominadas como se indica a continuación:

- Cadenas de Amarres.
- Cadenas de suspensión.
- Aisladores soporte.

CADENAS DE AISLADORES


Se forman de la unión de varios aisladores de idénticas características, unidos en serie. Se utilizan para sujetar las barras flexibles.

La cadena de amarre se diferencia de la cadena de suspensión en que a esta ultima se le adicionan dos aisladores mas.

El material de los aisladores puede ser cerámica o vidrio y los elementos de unión hierro maleable.

El material de fijación viene en dos modelos:

- Sócate y bola.
- -Anillo y grillete.

De uno u otro modelo dependerá los elementos de fijación del conductor a la cadena y la cadena a los pórticos.

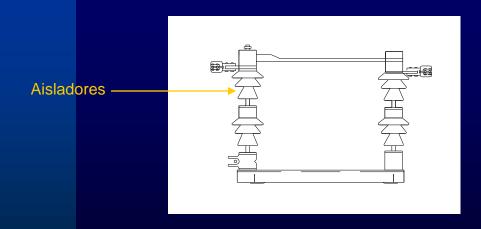
La ventaja de la fijación sócate y bola es que tiene mas grados de libertad que la de anillo y ojo.

Los aisladores de amarre deben tener capacidad para soportar dos veces la fuerza de tracción ejercida por los conductores flexibles bajo condiciones de cortocircuito.

Tabla 8.2 STANDART STRING FLASHOVER CHARACTERISTICS OF SUSPENSION INSULATORS based on test procedures of ANSI C29.1

Dise Dia capadng	No. of Unit		1	2	3	4:	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
-	Low- Frequency	D ryAV	60	120	175	226	275	÷.	2	14	10	13	্	1	8	-35	23		1	20	100	23		-	7.5	٠.	
Š Flashov	Average Flashover	WeskV	30	95	90	105	130	3		9		15	18	38	9		100	3		00	(0)	10	20	3	15		
5	Critical- Impulse	PositiveAV	100	200	300	385	460	.01	12		1	18	0	2	8.	[88]	20	0		76	100	30	10	19	75	-	
	Average Flashover	Negative#V	100	190	275	355	435	20		20		15		12		*	10	35		12.		0	10	2	2.		-
	Law- Frequency	D rydeV	65	130	190	246	295	32	114		11	92		.00	М.,	36	21	30		62		20	9	ů.	80	٠.	-
100	Average Flashover	WWW	35	05	95	130	105					10		18	22		-	25		2		::(10.	*	100	-	
€ Critic	Critical- Impulse	PositivsAV	115	225	310	390	485				4	*		-	3	::	46	4		82	3.5	20	9	4	80	·.	
	Average Flashover	NegativeAV	115	215	305	375	455	70	115	9	-11						-10	*		3.5	12.	59	155	33	100	-	Ι.
	Law- Frequency	D ryMV	80	145	200	250	300	346	300	440	485	530	576	615	660	700	746	785	825	865	906	945	985	1025	1066	1105	114
šo.	Average Flashover	WeskV	90	06	125	160	200	295	270	305	340	300	416	460	405	520	555	505	615	650	980	715	746	776	805	835	90
10°35°	Critical- Impulse	PositiveAV	125	250	335	420	490	505	646	720	790	965	935	1000	1075	1145	1220	1290	1355	1495	1510	1590	1660	1720	1790	1950	193
	Average Flashover	Negative.Kv	130	240	326	395	465	535	806	680	760	895	906	985	1060	1140	1210	1290	1366	1495	1510	1505	1660	1735	1810	1985	198
	Law	DryMV	80	165	215	270	325	380	435	405	540	500	540	690	735	785	830	875	920	985	1010	1055	1100	1145	1190	1235	126
4	Average Flanhover	WeskV	50	90	130	170	215	265	295	335	376	415	466	490	626	566	500	636	670	705	740	775	810	946	880	916	95
	Eritical- Impulse	positiveAV	125	205	355	440	525	610	005	790	900	945	1025	1105	1185	1205	1345	1425	1505	1595	1005	1745	1825	1905	1985	2065	214
	Average Flashover	NegativekV	130	255	345	415	495	585	670	760	946	990	1015	1105	1190	1275	1360	1440	1530	1615	1700	1785	1870	1955	2040	2125	22
	Law	DryMV	80	155	220	275	330	305	435	490	540	505	646	895	745	790	840	890	935	980	1025	1070	1115	1160	1206	1250	12
	Average Flashover	WeskV	80	95	120	100	200	240	200	320	300	400	400	476	510	546	590	015	050	005	720	750	785	815	860	890	91
	Critical- Impulse	positivaAV	140	255	360	450	540	630	720	810	900	990	1075	1180	1245	1330	1415	1500	1596	1670	1755	1840	1925	2010	2095	2180	221
	Average Flashover	N egatire/s//	140	255	345	425	515	610	700	790	880	970	1050	1150	1240	1330	1420	1510	1906	1700	1795	1800	1985	2080	2175	2270	235
77	Law-	D rydeV	96	190	260	335	400	465	530	595	860	720	700	840	895	950	1005	1060	1115	1170	1225	1280	1336	1390	1446	1500	150
1	Average Flashover	WeskV	66	100	145	190	235	200	325	370	416	400	510	555	505	035	075	720	760	800	840	880	920	960	995	1030	100
Dx.,,73	Critical- Impulse	positive.4/V	145	270	400	495	590	685	775	870	966	1060	115	1250	1350	1440	1530	163	1728	1820	1915	2010	2100	2190	2280	2370	24
*	Average Flachover	NegativeAV	150	255	380	485	590	680	780	880	975	1080	1180	1280	1380	1480	1580	1680	1780	1880	1980	2090	2175	2270	2365	2480	255
- 8	Law- Frequency	DryMV	100	160	220	275	335	390	440	400	540	500	635	580	730	776	820	805	910	955	1000	1040	1080	1115	1150	1195	123
Som.	Average Flashover	WeskV	80	96	130	165	200	236	270	305	336	365	396	425	466	400	505	630	555	500	806	626	646	996	605	706	72
fights ²⁷⁶	Critical- Impulse	PositiveAV	150	270	380	475	570	605	750	836	920	1005	1000	1175	1200	1345	1430	1515	1000	1095	1770	1950	1930	2010	2090	2170	225
-	Average Flashover	NegativekV	160	280	366	435	520	605	890	775	000	960	1040	1130	1220	1310	1400	1490	1505	1670	1755	1840	1925	2010	2.095	2180	226
	Low- Frequency	DryMV	100	170	240	300	360	420	475	530	585	640	690	740	790	840	885	930	975	1020	1066	1110	1155	1195	1235	1270	130
X614"	Average Flashover	WeskV	80	105	145	185	225	265	305	346	380	415	460	485	520	555	500	620	650	660	706	730	760	770	785	800	81
4 0	Critical-	PeritivaA/V	160	290	405	500	805	710	910	905	1000	1095	1186	1276	1366	1465	1545	1635	1725	1815	1905	1995	2066	2175	2266	2356	24
.t 0	Average Flashover	NegativeAV	170	290	390	480	590	675	760	865	960	1045	1140	1235	1330	1425	1520	1615	1.710	1905	1900	1995	2090	2195	2280	2370	24
	Law	D ryskV	110	175	240	300	380	420	475	353	595	660	695	745	795	846	896	940	990	1040	1135	1175	1220	1280	1306	1345	1,3
NPE N	Average Flashover	WeskV	05	125	150	105	235	276	310	346	386	420	466	405	535	570	005	635	005	605	726	755	780	805	830	890	87
12*** F0G TY	Critical	positiveAV	160	290	390	490	595	710	020	930	1040	1140	1236	1330	1426	1515	1610	1725	1025	1930	2000	2130	2230	2330	2430	2530	28
- 5	Average Flaghover	NegativeAV	170	245	355	465	590	690	900	910	1020	1130	1226	1315	1410	1500	1600	1705	1815	1925	2026	2130	2240	2340	2440	2540	25
- 92	Low-	D ryde//	120	195	250	240	415	495	555	620	595	755	815	975	935	996	1055	1116	1173	1235	1295	1355	1910	1470	1525	1590	16
X72% TYPE	Frequency Average Flashover	WesteV	70	125	170	215	260	305	350	395	440	485	530	575	620	665	710	755	795	840	885	930	970	1015	1060	1105	11
15 X7 20	Critical	PositiveAV	100	345	400	800	720	840	900	1000	1105	1310	1430	1550	1000	1780	1900	2020	2100	2250	2370	2470	2000	2720	2036	2950	30
	Impublie Average	NegativekV	190	315	495	550	670	790	900	1015	1130	1245		1490	1000				4				1			2995	291

Disc Dia. X spading	No. of Unit	- 3	1	2	3	4	5	6	7	8	9.	10	11	12	
	Low- Frecuency	D ry/kV	60	120	175	225	275	*	8		0	ä	30		
6°×5 ^{1/2} "	Average Flashover	Wet∕kV	30	55	80	105	130		ē.		572	8	·	¥	Γ
	Critical- Impulse Average Flashover	Positive/kV	100	200	300	385	460	8	by .	1646	4	18	8		Γ
		N egative/kV	100	190	275	355	435		78		27	is.		8	Γ
	Low- Frecuency Average Flashover Critical- Impulse Average Flashover	D ry/kV	65	130	190	245	295	8	A		H		12		
53/4		Wet/kV	35	65	95	130	165	Ø	14	100	4	14	13		
712"×53"4"		Positive/kV	115	225	310	390	465	¥i	-		¥7	16	8		
		N eg <i>a</i> tive/kV	115	215	305	375	455	8	16		77				
19191919	Low- Frecuency Average Flashover	D ry/kV	80	145	200	250	300	345	390	440	485	530	575	615	6
53		Wet/kV	50	85	125	160	200	235	270	305	340	380	416	450	4
10"X5"	Critical- Impulse	Positive/kV	125	250	335	420	490	565	646	720	790	965	935	1000	1
	Average Flashover	Negative/Kv	130	240	325	395	465	535	605	680	760	835	905	985	1
	Law-	D ry/kV	80	155	215	270	325	380	435	485	540	590	640	690	7

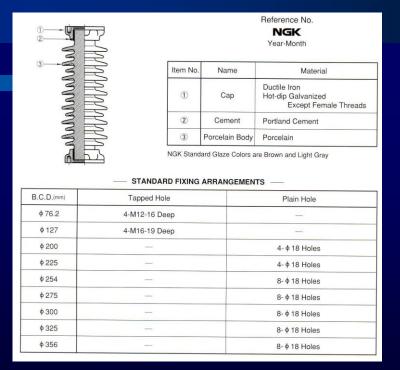

AISLADORES SOPORTE

Son aisladores que se utilizan para sujetar las barras soportadas y las cuchillas de los seccionadotes, en algunos casos se utilizan para orientar a las barras flexibles.

Existen dos tipos de aisladores soporte:

-Tipo Cap and Pin

En este tipo de aislador las distancias de seguridad se alcanzan colocan unidades en serie una sobre otra.


AISLADORES SOPORTE

- Tipo columna.

Están conformados por columnas de cerámica. La distancia de seguridad se alcanza bien sea con una unidad o varias unidades montadas una sobre otra.

Cada columna de cerámica termina en dos casquetes, al cual corresponde, uno para fijar el aislador a la estructura y el

otro para fijar el conector.

AISLADORES SOPORTE

CARACTERISTICAS TECNICAS A CONSIDERAR EN LA SELECCIÓN DE UN AISLADOR SOPORTE.

Esfuerzo a la torsión.

Esfuerzo a la compresión.

Esfuerzo en Cantilever.

Distancia de fuga.