Configuración Básica de Ruteadores Cisco

Carlos Vicente Servicios de Redes Universidad de Oregón

^{*} Adaptado del original de Mark Tinka (Uganda) presentado en AFNOG 2004

Componentes de un enrutador Cisco Tipos de Memoria

- RAM: Aloja los búfers de paquetes, la caché de ARP, la tabla de rutas, el software y las estructuras de datos que permiten al enrutador funcionar; la configuración actual se guarda en RAM, así como la IOS descomprimida en los modelos más nuevos.
- ROM: Contiene software básico que hace pruebas de hardware e inicia el enrutador
- Flash: Aloja la IOS. No se borra cuando se inicia el equipo. También se puede guardar en ella copias del archivo de configuración
- NVRAM (RAM No-Volátil): Guarda la configuración del enrutador. No se borra cuando se reinicia el equipo.

Componentes de un enrutador Cisco Software

- POST: Power On Self Test Alojado en ROM. Revisa las funcionalidades básicas del enrutador y determina cuáles interfaces están hábiles.
- <u>Bootstrap</u>: Alojado en ROM Inicia el enrutador y carga el sistema operativo (IOS).
- <u>ROM Monitor</u>: Alojado en ROM Utilizado para pruebas y resolución de problemas. Un interfaz básico para cuando no hay IOS
- ◆ IOS: Internetwork Operating System El sistema operativo principal del enrutador. Contiene todas las funcionalidades de éste.

Componentes del enrutador

- Config-Register (Registro de Configuración):
 - Controla cómo se inicia el enrutador.
 - Su valor actual se muestra con el comando "show version"
 - Generalmente es <u>0x2102</u>, lo cual indica al enrutador que cargue la IOS desde memoria Flash y la configuración de inicio desde NVRAM

Cuándo modificar el Config-Register

Razones posibles:

- Forzar al enrutador a entrar en modo ROM-monitor
- Indicar dónde buscar la configuración de inicio
- Activar/Desactivar la función de "Break"
- Configurar la tasa de bits de la consola
- Cargar el sistema operativo desde ROM
- Activar el inicio desde un servidor TFTP

Configuración

La configuración del enrutador afecta:

- Las direcciones IP y las máscaras de cada interfaz
- Información de ruteo (estático, dinámico o por defecto)
- Información de inicio
- Seguridad (contraseñas)

¿Dónde está la configuración?

- El enrutador siempre tiene dos configuraciones:
 - "Running" (actual)
 - En RAM, indica con qué parámetros el enrutador está operando actualmente
 - Se modifica con el comando configure
 - Para verla: show running-config
 - "Startup" (de inicio)
 - En NVRAM, determina cómo va a operar el enrutador cuando sea reiniciado
 - Se modifica usando el comando copy
 - Para verla: show startup-config

¿Dónde está la configuración?

- También se puede guardar en sitios más permanentes:
 - Otras máquinas, usando TFTP (Trivial File Transfer Protocol)
 - En la memoria Flash del enrutador
- Se mueve de un lugar a otro con el comando copy
 - copy run start
 - copy run tftp
 - copy start tftp
 - copy tftp start
 - copy flash start
 - copy start flash

Modos de Acceso

- Modo de ejecución de usuario (User EXEC): Examinar el enrutador de forma limitada
 - Router>
- Modo de ejecución privilegiado (Privileged EXEC): Examen detallado, resolución de problemas, pruebas, manipulación de ficheros
 - Router#
- ROM Monitor: Útil para recuperación de contraseñas y para instalar IOS
- Modo Setup Disponible cuando no existe el fichero startup-config

Fuentes de Configuración Externas

- Consola: Acceso directo vía puerto serie
- Puerto Auxiliar: Acceso vía modem
- Terminales Virtuales: Acceso Telnet/SSH
- Servidor TFTP: Copiar la configuración en la NVRAM
- **♦Software de Gestión**: CiscoWorks

Cambiar la Configuración

- Los comandos de configuración se pueden ejecutar de forma interactiva. Los cambios se activan (casi) inmediatamente en la configuración corriente.
- Puede usar una conexión directa vía puerto serie, o
- Hacer Telnet/SSH a las vty's ("virtual terminals"), o
- Una conexión vía módem al puerto auxiliar, o
- Escribir los comandos en un fichero de texto y cargarlo luego en el enrutador vía TFTP
 - copy tftp start O config net

Entrar al enrutador (Login)

Conectarse al puerto consola o hacer Telnet

```
router>
router>enable
password
router#
router#?
```

- Configurar el enrutador
 - Terminal (Entrar los comandos directamente)

```
router# configure terminal
router(config)#
```

Conectar su máquina (Linux) al enrutador vía puerto serie

- Conecte su máquina al enrutador con el cable serie provisto
- Utilice el programa 'minicom' para emular un terminal vía puerto serie
 - En Windows puede usar:
 - HyperTerminal (incluído en Windows)
 - TeraTerm, CRT, etc. (freeware)

Configuración de un enrutador nuevo

- Cargar los parámetros de configuración en la RAM
 - Router#configure terminal
- Dar al enrutador una identificación
 - Router#(config)hostname RouterA
- Asignar contraseñas de acceso
 - RouterA#(config)line console 0
 - RouterA# (config-line) password cisco
 - RouterA# (config-line) login

Configuración de un enrutador nuevo

- Configurar interfaces
 - RouterA# (config) interface ethernet 0/0
 - ◆ RouterA# (config-if) ip address n.n.n.n m.m.m.m
 - RouterA#(config-if)no shutdown
- Configurar protocolos ruteados y de ruteo
 Guardar la configuración en NVRAM
 - RouterA#copy running-config startup-config o write memory

Indicadores – Cómo saber dónde está usted en el enrutador

Puede saber en qué área de la configuración se encuentra sólo mirando los indicadores

- Router> modo USER
- Router# modo PRVILEDGED EXEC
- Router (config) modo configuración global
- Router (config-if) modo configuración interfaz
- Router (config-subif) modo configuración sub-interfaz
- Router (config-route-map) modo configuración route-map
- Router (config-router) modo configuración enrutamiento
- Router (config-line) modo configuración de línea
- rommon 1> modo configuración ROM Monitor

Configuración Global

- Los comandos de configuración globales son independientes de interfaces o protocolos específicos
 - hostname router1
 - enable-password cisco
 - service password-encryption
 - logging facility local0
 - logging n.n.n.n

Configuración Global

- Configure la contraseña "enable secret":
 - router(config) # enable secret <clave>
 - La clave aparecerá en texto en claro. Ejecute el comando siguiente para hacer más segura:
 - router(config) # service password-encryption
 - Otro método es usar el comando 'enable password'. Este no es seguro (débil y texto en claro) y NO ES RECOMENDADO.
- Comandos globales relacionados con IP:
 - ip classless
 - ip name-server n.n.n.n
- Creación de rutas estáticas
 - ip route <n.n.n.n> <m.m.m> <g.g.g.g>
 - n.n.n.n = bloque IP
 - m.m.m.m = máscara de red (tamaño del bloque)
 - g.g.g.g = enrutador del próximo salto por omisión

El comando 'no'

- Utilizado para desactivar o invertir un comando
 - ◆ ip domain-lookup
 - ◆ no ip domain-lookup
 - router ospf 1
 - no router ospf 1
 - ip address 1.1.1.1 255.255.255.0
 - no ip address

Configuración de Interfaces

- Su nombre tiene el formato *Tipo/Ranura/[Número]*.
 ej.:
 - ethernet0, ethernet1,... Ethernet5/1
 - Serial0/0, serial1 ... Serial3
- Y se pueden abreviar:
 - ethernet0 o eth0 or e0
 - Serial0/0 o ser0/0 or s0/0

Configuración de Interfaces

Configuración de la dirección IP y máscara

```
router#configure terminal
router(config)#interface e0/0
router(config-if)#ip address n.n.n.n m.m.m.m
router(config-if)#no shutdown
router(config-if)#^Z
router#
```

Configuración de Interfaces

Activar/Desactivar la interfaz con carácter administrativo

- router(config-if) #no shutdown
- router(config-if) #shutdown

Descripción

 router (config-if) #description enlace ethernet al edificio de administración

Mostrar la configuración

- Use "show running-configuration" para ver la configuración corriente
- ◆Use "show startup-configuration" para ver la configuración guardada en NVRAM

Guardar la configuración en un servidor

 Requiere tftpd en una máquina unix. El fichero destino debe existir en el directorio antes de ser copiado y debe tener permiso de escritura

```
Router#copy run tftp

Address or name of remote host []? 192.168.1.5

Destination filename [Router-confg]? y
!!!!!

15693 bytes copied in 0.792 secs (19814 bytes/sec)
```

Recuperar la Configuración desde el servidor

- Use 'tftp' para cargar la configuración desde el servidor TFTP, copiandola en running-config o startup-config
 - Router#copy tftp start
 - Address of remote host [255.255.255.255]? 192.168.1.5
 - Name of configuration file [Router-confg]?
 - Configure using Router-confg from 192.168.1.5? [confirm]
 - Loading Router-confg from 192.168.1.5 (via Ethernet0/0): !
 - [OK 1005/128975 bytes]
 - [OK]
 - Router# reload

- La IOS tiene una utilidad integrada para ayuda
 - use "?" para obtener una lista de posibles comandos
 - router#?
- "<comando incompleto> ?" Lista todos los posibles sub-comandos, ej:
 - router#show ?
 - router#show ip ?

"<cadena incompleta>?" También muestra los posibles comandos que empiezan con la cadena

```
router#con?
configure connect
```

Esto es diferente que

También funciona en modo de configuración:

```
router(config)#ip a?
accounting-list accounting-threshold accounting-transits
  address-pool alias as-path
```

```
router(config) #int e0/0
router(config-if) #ip a?
access-group accounting address
```

"Explorar" un comando para determinar su sintaxis:

```
router(config-if) #ip addr ?
 A.B.C.D IP address
router(config-if) #ip addr n.n.n.n?
  A.B.C.D IP subnet mask
router(config-if) #ip addr n.n.n.n m.m.m. ?
  secondary Make this IP address a secondary address
  \langle cr \rangle
router(config-if) #ip addr n.n.n.n m.m.m.m
router(config-if)#
```

Ayuda para perezosos

La tecla TAB puede completar una cadena icompleta

```
router(config) #int<TAB>
router(config) #interface et<TAB>
router(config) #interface ethernet 0
router(config-if) #ip add<TAB>
router(config-if) #ip address n.n.n.n m.m.m.m
```

Aunque no es necesario. También se aceptan comandos incompletos:

```
router#conf t
router(config)#int e0/0
router(config-if)#ip addr n.n.n.n
```

Más trucos para perezosos

- Registro de comandos
 - IOS mantiene una lista de los comandos introducidos recientemente
 - † trae el comando anterior
 - ↓ trae el comando siguiente

Edición de la línea

- ← y → mueven el cursor dentro del comando
- Ctrl-a le lleva al comienzo de la línea
- Ctrl-e le lleva al final de la línea
- Ctrl-k borra desde el cursor hasta el final de la línea

Borrar la configuración

Para borrar la configuración completamente

Router#erase startup-config

0

Router#write erase

Y luego

Router#reload

El enrutador se reiniciará en modo "setup", porque no encontrará el archivo de configuración

Listas de Control de Acceso

- Las "access lists" se utilizan para implementar seguridad en los enrutadores
 - Permiten alto grado de control en la red
 - Filtran el flujo de paquetes entrando o saliendo de las interfaces del enrutador
 - Restringen el uso de la red a ciertos usuarios o equipos
 - Prohiben o permiten tipos de tráfico

Reglas de Aplicación de las Listas de Acceso

- Se analizan en orden secuencial: línea 1, línea 2, etc.
- La información de un paquete se compara con la lista hasta que una coincidencia ocurre. Luego de esto NO se sigue comparando.
- Existe una línea de prohibición tácita al final de cada lista. Si un paquete no coincide con ninguna regla, al final se descarta.

Utilización de las listas de acceso

- Listas de Acceso Estándar (1 99)
 - Especificaciones de direcciones más simples
 - Generalmente permiten o prohíben el datagrama IP completo
- Listas de Acceso Extendidas (100 199)
 - Forma más compleja de especificar direcciones
 - Generalmente permiten o prohíben protocolos (puertos) específicos

Sintaxis de las Listas de Acceso

Sintaxis de las listas estándar

```
access-list access-list-number {permit | deny} source
{source-mask}
```

```
ip access-group access-list-number {in | out}
```

Sintaxis de las listas extendidas

```
access-list access-list-number {permit | deny} protocol
  source {source-mask} destination {destination-mask}
```

```
ip access-group access-list-number {in | out}
```

Dónde Aplicar las Listas de Acceso

Aplique las listas de acceso lo más cerca posible de donde se origina el tráfico

Meta-Máscaras

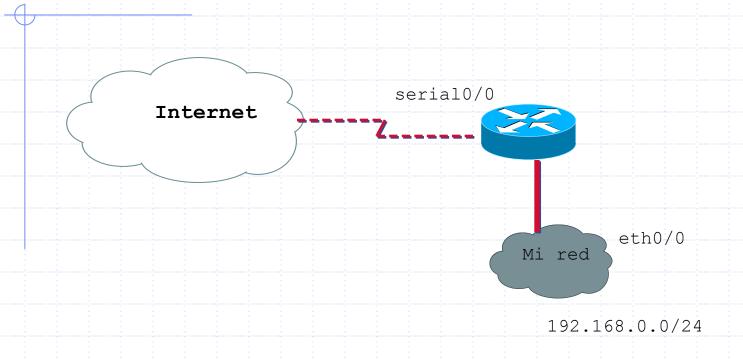
- (Wildcard Masks)
- Se incluyen en las listas de acceso para especificar un nodo, una subred o parte de ella.
- Ejemplos:
 - Para especificar un nodo:
 - 192.168.1.5 0.0.0.0
 - Especificar una red pequeña:
 - 192.168.1.0 192.168.1.7 (sería una /29)
 - El tamaño del bloque es 8 y la metamáscara es siempre un número menos que el tamaño del bloque
 - El bloque será entonces: 192.168.1.0 **0.0.0.7**

Meta-Máscaras

- Más ejemplos:
 - Todos los nodos en una /24 (equivalente a clase C)
 - **1**92.168.1.0 0.0.0.255

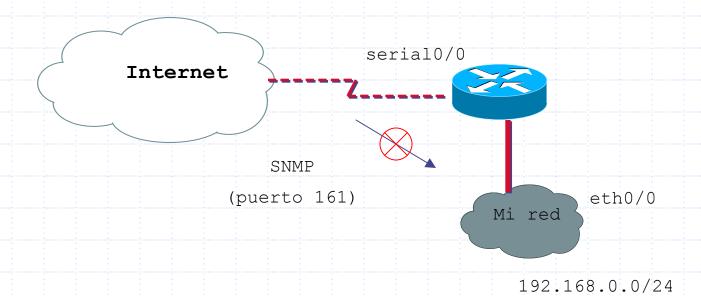
Truco para calcular una meta-máscara

- Restar cada octeto (en decimal) de 255
- Para determinar la meta-máscara de 192.168.1.0
 255.255.255.240
 - 192.168.1.0 0.0.0.15 {255 240}
- Para 192.168.1.0 255.255.252.0
 - 192.168.1.0 0.0.3.255


Ejemplo de Lista de Acceso

- ♦ Hacer coincidir las subredes 192.168.0.0 a 192.168.64.0
 ip access-list 99 192.168.0.0 0.0.63.255
- Los bits de la meta-máscara indican cómo interpretar los bits de la dirección
 - 0=coincide
 - 1=ignora
- Coincidir con cualquier dirección IP
 - **0.0.0.0** 255.255,255.255
 - O abrevie la expresión utilizando la palabra any
- Concidir con un nodo en específico
 - **192.168.1.5 0.0.0.0**
 - O abrevie la expresión utilizando la palabra host

Permitir acceso Telnet a mi red solamente


```
access-list 1 permit 192.168.32.192 0.0.0.15
access-list 1 deny any
line vty 0 4
access-class 1 in
```

Ejemplo de lista de acceso estándar

ip access-list 99 permit 192.168.0.0 0.0.0.255
interface eth0/0
 access-group 99 in

Ejemplo de lista de acceso extendida Prohibir la entrada de tráfico SNMP

access-list 101 deny udp any 192.168.0.0 0.0.255 eq 161 log access-list 101 permit ip any any

interface serial 0/0 ip access-group 101 in

Recuperación de Desastres – ROM Monitor

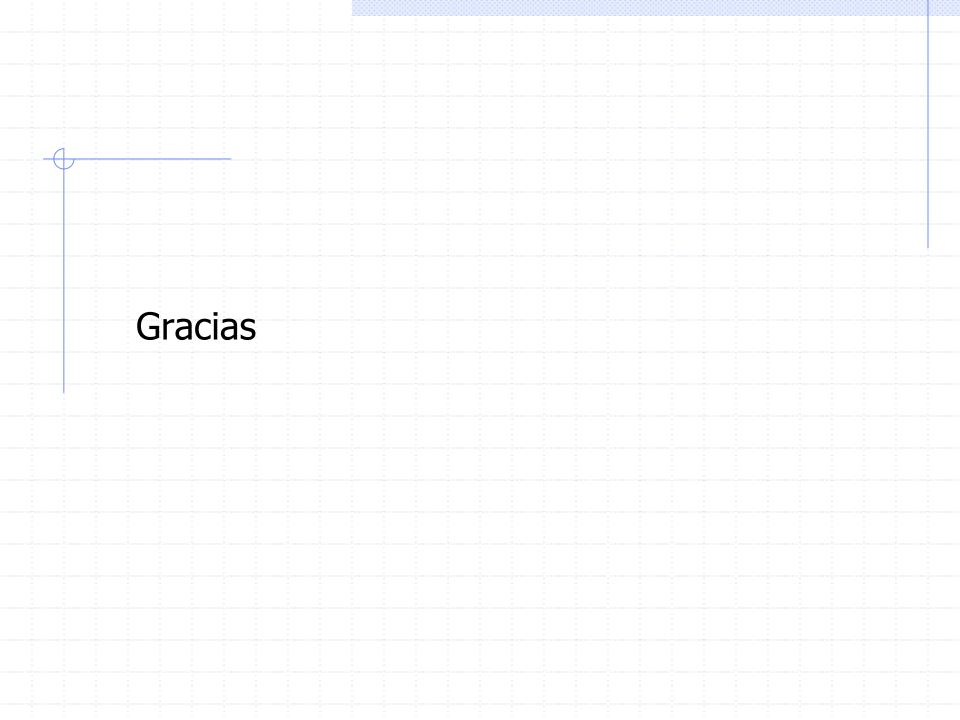
- El ROM monitor es muy útil para resolver problemas tales como:
 - Recuperación de contraseñas
 - Instalar una nueva IOS cuando el enrutador no tiene ninguna
 - Seleccionando el lugar dónde buscar el fichero de configuración y su nombre
 - Cambiar la tasa de de bits de la consola para cargar la IOS más rápidamente
 - Cargar un sistema operativo desde el ROM
 - Activar la opción de cargar la configuración desde un servidor TFTP al iniciar

Recuperación de Desastres – ROM Monitor

- Cómo entrar en ROM Monitor
 - Revisar en su emulador de terminal cómo se envía la secuencia de abortar (CTRL-Break)
 - Cuál es en Minicom?

Recuperación de Desastres – Cómo recuperar la contraseña

- ◆Su config-register normalmente es 0x2102; use "show version" para verificar
- Reinicie el enrutador y envíe la secuencia de "break" durante los primeros 60 segundos para entrar en ROM Monitor
- ♦ Una vez allí:


```
rommon 1>confreg 0x2142
rommon 2>reset
```

El enrutador se reinicia, ignorando el fichero de configuración

Recuperación de Desastres – Cómo recuperar la contraseña

 Le preguntará si quiere iniciar "Setup". Diga que no.

```
Router>enable
Router#copy start run (;;no al revés!!)
Router#show run
Router#conf t
Router (config) enable secret <clave nueva>
Router (config) int e0/0...
Router (config-if) no shut
Router (config) config-register 0x2102
Router (config) end
Router#copy run start
Router#reload
```

